User Tools

Site Tools


statistics_for_prescription

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

statistics_for_prescription [2012/04/05 19:07]
ddrummond created
statistics_for_prescription [2012/07/13 16:15] (current)
128.192.48.132
Line 1: Line 1:
 ====== Statistics for Prescription ====== ====== Statistics for Prescription ======
 +Statistics are numerical data about a subject or a name applied to
 +analysis of the reliability of statistical information by sampling.
 +\\
 +The person who analyzes the forest land statistics commonly needs 
 +only 6 items - Mean, Standard Deviation, Standard Error, Limit of Error,
 +Coefficient of Variation, and Number of Plots to Sample a Stand to a Desired Accuracy.
 +\\
 +\\
 +====Mean- M or Average==== ​
 +A total of all sample counts divided by the number of samples.\\
 +M = (sum of sample counts)/​(number of samples)
 +\\
 +\\
 +====Standard Deviation- SD==== ​
 +A statistician'​s measure of the spread between the individual
 +sample from the mean. The SD is just a tool in calculating error, CV and N.\\
 +SD = √[(∑(Dev)<​sup>​2</​sup>​)/​(n-1)]
 +\\
 +\\
 +====Standard Error- SE==== ​
 +A statistician'​s stepping stone toward determination of LE.\\
 +SE = (SD)/√N)
 +\\
 +\\
 +====Limit of Error- LE==== ​
 +We cannot calculate the actual volume and cannot know the exact error.
 +We calculate a LE or a selected probability. We might say "using gambling odds of 67 out of 100,
 +(2 out of 3), we have a mean volume of 20 cords per acre, plus or minus 2 cords."​ The mean is 20,
 +the Standard Error is ±2, and the Limit of Error is .10 or 10%. Increasing the gambling odds to 
 +95 out of 100 doubles the LE. (20%). For odds of 99 out of 100 the LE triples (30%). \\
 +LE = (SE)/(M)
 +\\
 +\\
 +====Coefficient of Variation- CV==== ​
 +This describes the relative uniformity of he stand. The CV is 
 +our most important statistical term. For planted stands the CV may vary .10 to .30 (10%-30%). ​
 +Natural stands may vary from about .30 to over 1.00. Different stands with the same CV require ​
 +the same number of samples to produce means of equal accuracy, regardless of the areas of these
 +stands. The CV comes from the SD and the calculated average or mean.\\
 +CV = SD/M
 +\\
 +\\
 +====Plots Needed to Sample a Stand to a Desired Accuracy==== ​
 +The number of samples (N) has a basic
 +relationship with CV, LE, and the probability.\\
 +N = (t)<​sup>​2</​sup>​(CV)<​sup>​2</​sup>/​(LE)<​sup>​2</​sup>​\\
 +"​t"​ is the probability or gambling odds. Use "​l"​ or "​t"​ for one SD where values involved in the 
 +cruise are low and when we can be satisfied with a 2 times out of 3 chance of arriving at a 
 +figure that will vary within one SD plus or minus from the Mean.\\
 +\\
 +Use "​2"​ for "​t"​ for more accuracy. This variation of 2 SD's plus or minus makes gambling odds of
 +95 in 100 that we'll not exceed 2 Standard Deviations. This will take 4 times as many samples as
 +for 1 SD. Here's and example:\\
 +\\
 +--To make a cruise of ±10% LE with a gambling chance of ± 2 SD (95 times in 100) CV = 30%.\\
 +\\
 +Use: \\
 +N = (2<​sup>​2</​sup>​×.30<​sup>​2</​sup>​)/​(.10<​sup>​2</​sup>​) = (4(.09))/​(.01) = 36 plots\\
 +For 1 SD, (t)<​sup>​2</​sup>​ = 1 and N would be 9 plots.\\
 +For 3 SD, (t)<​sup>​2</​sup>​ = 9 and N would be 81 plots.\\
 +If CV were 15%, N would be one-quarter as many.\\
 +If SD were 1 and LE were .20, N would be 9 plots.\\
 +\\
 +Example: Tree counts on 9 sampling points--
 +^point no. ^tree count ^Deviation from mean ^(dev)^2 ​   |
 +|1         ​|3 ​         |2                   ​|4 ​         |
 +|2         ​|3 ​         |2                   ​|4 ​         |
 +|3         ​|10 ​        ​|5 ​                  ​|25 ​        |
 +|4         ​|5 ​         |0                   ​|0 ​         |
 +|5         ​|5 ​         |0                   ​|0 ​         |
 +|6         ​|4 ​         |1                   ​|1 ​         |
 +|7         ​|3 ​         |2                   ​|4 ​         |
 +|8         ​|5 ​         |0                   ​|0 ​         |
 +|9         ​|8 ​         |3                   ​|9 ​         |
 +^n = 9     ​^9/​46 ​      ​^ ​                   ^∑(D)^2 = 47|
 +M = 5.1 (call it 5)\\
 +SD(Std. Dev) = √(∑(D)<​sup>​2</​sup>​)/​(n-1) = √(47/8) = 2.42\\
 +\\
 +SE(std. Error) = SD/√n = 2.42/√9 = .81 \\
 +\\
 +LE (Limit of Error) = SE/M = .081/5 = .16 = 16%\\
 +\\
 +CV (Coef. of Var.) = SD/M = 2.42/5 = .48 = 48%\\
 +\\
 +N (No of plots): \\
 +N (For 1 SD) = (1)<​sup>​2</​sup>​(CV)<​sup>​2</​sup>/​(% Acc)<​sup>​2</​sup>​ = 
 +(.48)<​sup>​2</​sup>/​(.10)<​sup>​2</​sup>​ = 23 plots\\
 +N (For 2 SD) = (2)<​sup>​2</​sup>​(CV)<​sup>​2</​sup>/​(% Acc)<​sup>​2</​sup>​ =
 +(4×.23)<​sup>​2</​sup>/​(.01)<​sup>​2</​sup>​ = 92 plots\\
 +N (For 1 SD ±20%)= (CV)<​sup>​2</​sup>/​(% Acc)<​sup>​2</​sup>​ = .23/.04 = 6 plots.
 +
 +===No of Samples to be Taken from Infinite Population = n===
 +^CV%    ^Specified % Limit - SE        ^^^|
 +^       ^± 1-1 1/2% ^±5%  ^±10% ​ ^±20% ​   |
 +^       ​^N ​                            ^^^|
 +|10     ​|45 ​        ​|4 ​   |1     ​|1 ​      |
 +|20     ​|178 ​       |16   ​|4 ​    ​|1 ​      |
 +|30     ​|400 ​       |36   ​|9 ​    ​|3 ​      |
 +|40     ​|712 ​       |64   ​|16 ​   |4       |
 +|50     ​|1,​112 ​     |100  |25    |7       |
 +|60     ​|1,​600 ​     |144  |36    |9       |
 +|70     ​|2,​178 ​     |196  |49    |13      |
 +|80     ​|2,​845 ​     |256  |64    |16      |
 +|90     ​|3,​600 ​     |324  |81    |21      |
 +|100    |4,​445 ​     |400  |100   ​|25 ​     |
 +|150    |10,​000 ​    ​|900 ​ |225   ​|57 ​     |
statistics_for_prescription.1333652846.txt.gz · Last modified: 2012/04/05 19:07 by ddrummond