User Tools

Site Tools


firewood_weight_volume_relationship

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
firewood_weight_volume_relationship [2012/04/05 19:27]
ddrummond created
firewood_weight_volume_relationship [2013/03/28 17:12] (current)
rsheridan consider leaving , include heating value per dry pound or ton between species, consider keeping it, check for editing on this page!,
Line 1: Line 1:
 ====== Firewood Weight/​Volume Relationship ====== ====== Firewood Weight/​Volume Relationship ======
 +===Heat value of Dry Wood===
 +The heat value of wood **per unit of weight** is about the same for all species: 8,600 Btu per pound, ​
 +ovendry weight. Exceptions to this rule are very resious species, which have slightly higher values.
 +The heat value of hardwood bark is slightly lower than that of wood, while the energy content of pine
 +bark is slightly higher.
 +
 +The heat value of wood **per unit volume**, at any given moisture content (MC), depends on its specific
 +gravity or relative density. The higher the specific gravity (SG) of a wood, the denser the wood per 
 +unit of volume, and the higher its heat value.
 +
 +The table below groups common tree species by relative density classes. Each class represents a different
 +range of specific gravities of wood, and each class has been assigned an average specific gravity factor.
 +This factor is used to calculate the **approximate** amount of heat energy available in a given volume
 +of dry wood.
 +
 +===Calculation of Gross Heat Value (GHV)===
 +To calculate the GHV of a cord of dry wood, two assumptions are first made:​\\ ​
 +1. A cord(CD) of dry wood contains 80ft<​sup>​3</​sup>​ of solid wood.\\
 +2. Each pound of ovendry wood, regardless of species can produce 8,600 Btu of heat energy.
 +
 +**Relative density classes, based on specific gravity, for common tree species, with average specific
 +gravity factors.**
 +
 +^SG Range              ^Low-Density Woods  ^Medium-Density Woods    ^High-Density woods     |
 +^                      ^Less that .50      ^.05-.59 ​                ​^Greater than .59       |
 +^Avg. SG Factor ​       ^0.45               ​^0.55 ​                   ^0.65                   |
 +|Species, common names |Aspen ​             |Ash, green             |Ash, white            |
 +|                      |Baldcypress ​       |Birch, paper            |Beech ​                 |
 +|                      |Basswood ​          ​|Cherry,​ black           ​|Birches,​ sweet, yellow |
 +|                      |Butternut ​         |Elms: American, Slippery|Dogwood ​               |
 +|                      |Cedar ​             |Hackberry ​              |Elm, rock              |
 +|                      |Cottonwood ​        ​|Holly,​ American ​        ​|Hickory ​               |
 +|                      |Fir                |Magnolia ​               |Honeylocust ​           |
 +|                      |Hemlock ​           |Maple, red              |Hophornbeam ​           |
 +|                      |Maple, silver ​     |Pines, Loblolly, longleaf, pitch, pond, shortleaf, slash|Locust,​ black|
 +|                      |Pines, Eastern white, Jack, Red, Sand, Spruce, Virginia|Sweetgum|Magle,​ sugar|
 +|                      |Sassafras ​         |Tamarack ​               |Oak                    |
 +|                      |Sycamore ​          ​|Tupelo ​                 |Osage-orange ​          |
 +|                      |Willow, black      |Walnut, black           ​|Pecan ​                 |
 +|                      |Yellow-poplar ​     |                        |Persimmon ​             |
 +
 +Specific gravity is based on ovendry weight and volume at 12% moisture content. The average specific
 +gravity factors shown here were arbitrarily chosen to represent all species within a certain density
 +class.
 +
 +The formula for **gross heat volume** is: 
 +
 +GHV = SG factor X [6.23 lb./​ft<​sup>​3</​sup>​(wt. of water)X 80 ft<​sup>​3</​sup>/​CD. X 8600Btu/​ovendry lb.]
 +
 +[6.23 lb./​ft<​sup>​3</​sup>​(wt. of water)X 80 ft<​sup>​3</​sup>/​CD. X 8600Btu/​ovendry lb.] = 42,862,400 Btu/cord.
 +
 +This formula is used to derive approximate GHV'​s‡ for each of the three density classes: ​
 +
 +     Low Density Woods: ​
 +        GHV = 0.45 X 42,862,400 Btu/cord = 19.3 million Btu per cord. (MMBtu/CD.)
 +        ​
 +     ​Medium Density Woods:
 +        GHV = 0.55 X 42,862,400 Btu/cord = 23.6 MMBtu/CD.
 +     
 +     High Density Woods: ​
 +        GHV = 0.65 X 42,862,400 Btu/cord = 27.9 MMBtu/CD.
 +        ​
 +Use the following table to provide a more precise GHV, if a species'​ average specific gravity ​
 +is known.
 +
 +**Gross heat value of ovendry wood by specific gravity**
 +
 +^Relative density or specific gravity ​  ​^Gross heat value per cord (MMBtu) |
 +|.30                                    |12.8                              |
 +|.35                                    |15.0                              |
 +|.40                                    |17.1                              |
 +|.45                                    |19.3                              |
 +|.50                                    |21.4                              |
 +|.55                                    |23.6                              |
 +|.60                                    |25.7                              |
 +|.65                                    |27.9                              |
 +|.70                                    |30.0                              |
 +|.75                                    |32.1                              |
 +|.80                                    |34.3                              |
 +|.85                                    |36.4                              |
 +|.90                                    |38.6                              |
 +
 +
 +‡These GHV's a re only approximations of Btu's available from a cord of dry wood of a species group.
 +If a more precise heat value is needed for a particular species, the average SG of  that species
 +must be used in place of the density class SG factor. SG values for most woods can be found in
 +__The Wood Handbook__ (USDA FS, For. Prod. Lab. Ag Hdbk No. 72)
 +
 +For example, if we knew the average SG of balsam fir were 0.36, we could use the preceding table to 
 +determine a more exact GHV for a dry cord of balsam fir: 15.4 million Btu. This figure is certainly
 +a better approximation than the 19.3 milion Btu derived through the use of the first and the 
 +generalized GHV formulas for broad density classes.
 +
 +Note that the GHV's calculated by the density class method are only approximations;​ they are meant 
 +to provide relative values for large groups of woods. More realistic GHV's can be derived, however,
 +by using the same general formula and by substituting a more precise SG value for the standard SG
 +value shown in the first table.
 +
 +Also not, at this point, that **gross heat values** represent the **maximum Btu values for ovendry ​
 +wood.** To find the actual, or net, heat value of a cord of green or partly dried wood, other
 +factors must be considered, such as the amount of water in the wood and the combustion efficiency
 +of the device in which the wood is to be burned.
 +
 +**Heat Value of Green Wood**
 +All wood except that artificially dried in the laboratory contains some amount of water, commonly ​
 +expressed as moisture content (MC). Though there are two accepted methods of calculating MC, most
 +wood technologists calculate MC ont he basis of ovendry weight (ODWT), as follows: ​
 +
 +MC% = (Green weight-ODWT)/​(ODWT) X 100  [Equation 1]
 +
 +In the above equation, the green weight (GWT) and ODWT of a given volume of wood must be known. If
 +the MC and ODWT of a cord of wood are known, GWT can be calculated as follows: ​
 +
 +GWT = ODWT(1+(MC%/​100)) [Equation 2]
 +
 +Using the same relationships,​ and knowing both GWT and MC, ODWT can be found this way: 
 +
 +ODWT = (GWT/​(1+(MC%/​100)) [Equation 3]
 +
 +if MC, ODWT, and GWT of a cord are not known, but the SG of that wood is, we can calculate ODWT
 +another way:
 +
 +ODWT/CD = SG X 6.23lb/​ft<​sup>​3</​sup>​ X 80ft<​sup>​3</​sup>/​CD. [Equation 4]
 +
 +All of these equations are helpful in calculating the **low heat value** (LHV) of wood. This value
 +is defined as the amount of net energy available in a given volume of wood after accounting for the
 +energy needed to evaporate the water in the wood, but before accounting for the the combustion ​
 +efficiency of the device in which the wood is burned. After determining LHV, combustion efficiency
 +can be factored in to arrive at the bottom line, net heat value (NHV.)
 +
 +===Calculation of Low Heat Value===
 +To estimate LHV it is necessary to know the weight of water contained in a given volume of wood. That
 +water must be evaporated before wood can burn. This water evaporation requires about 1,210 Btu per 
 +pound of water, and the total energy needed to evaporate all the water in the wood must be deducted
 +from GHV to arrive and LHV.
 +
 +Take as an example a cord of "​green"​ red maple. Assume approximate heat values are all that is 
 +required. The table above suggest the GHV for red maple to be 23.6 million Btu per cord. To simplify
 +the process, assume green woods have an average MC of 75% ODWT basis. [The reported average MC for red
 +maple is 70%]. At 75% MC, how many pounds of water are in a cord of red maple? This value would be the 
 +difference in weight between a green cord and an ovendry cord.
 +
 +Recall that equation 4 can be used to calculate ODWT/CD, if we know the SG. Because an approximation
 +of LHV is all that is required for this example, use .55 as average SG (see table above).
 +
 +ODWT/CD = 0.55 X 6.23 X 80 = 2,741 pounds.
 +
 +With values for MC and ODWT, equation 2 can be used to calculate GWT: 
 +
 +GWT/CD = 2,741(1+ (75%/100)) = 2,741(1.75) = 4,797 pounds
 +
 +Weight of water in the cord would be: 
 +
 +Wt. of water/CD = GWT/CD - ODWT/CD = 4,797lb - 2,741pounds = 2,056 pounds
 +
 +The amount of energy needed to evaporate this weight of water is 2.5 million Btu per cord, i.e.,
 +
 +1,210 Btu/lb of water X 2,056lb of water/CD
 +
 +Now deduct this value from GHV to arrive at LHV: 
 +
 +LHV = 23.6 MMBtu/CD -2.5 MMBtu/CD. = 21.1MMBtu/​CD
 +
 +===Calculation of Net Heat Value (NHV)===
 +Calculation of net heat value requires reducing LHV to account for energy losses which occur during the
 +combustion process. These Btu losses may be due to excessive air entering the combustion chamber, ​
 +excessively high temperatures of flue gases, ro simple radiation losses. Btu losses are generally ​
 +related stove or furnace efficiency.
 +
 +Efficiency of stoves, fireplaces, and other heating devices are affected by the design, quality of 
 +installation,​ location, indoor and outdoor temperatures,​ and use patterns. Fireplaces range in 
 +efficiency ​ from -10 to 15%, box stoves 20-40%, and airtight stoves 25-70%. ​
 +
 +To calculate NHV it is necessary to know which type of heating device will be used to burn the wood,
 +and then to apply a combustion efficiency factor to the LHV. 
 +
 +Assume an airtight stove is to be used to burn a cord of red maple, and that it's a new, carefully
 +installed and properly located stove. Its combustion efficiency factor will be at least 60%. 
 +
 +Net Heat Volume (NHV) = 0.60 X 21.1 million Btu per cord. = 12.7 million Btu per cord.
 +
 +For this example, under assumptions made, a green cord of red maple burned in a 60% efficient airtight
 +stove would produce approximately 12.7 million Btu's net heat energy.
 +
 +If the average reported SG for red maple (0.54) and that species'​ average reported green MC (70%) had
 +been used in the calculation of NHV (in an effort to derive a more precise value), the NHV would have
 +been approximately 12.5 million Btu per cord, only 0.2 millin Btu off the approximation [1.6% error].
 +
 +   The process of calculation NHV can be summarized this way: 
 +   
 +   1. GHV (MMBtu/CD) = SG X 42.862 MMBtu/CD.
 +   2. LHV (MMBtu/CD) = GHV - [1,120 Btu/lb X lb. water/CD]
 +   3. NHV (MMBtu/CD) = Combustion efficiency factor X LHV
 +
 +When asserting the energy content of a cord of firewood, the most important parameter is the ovendry
 +density for that species because a pound of dry wood of any species has about the same energy content.
 +If all species were sold at the same price, the best buy would, of course, be the denser wood, assuming
 +equal moisture contents. When buying wood by the pound, the most important parameter is moisture ​
 +content, and the driest wood would be the best buy.   
 +              ​
firewood_weight_volume_relationship.1333654048.txt.gz · Last modified: 2012/04/05 19:27 by ddrummond